The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the averaged vector field method

نویسندگان

  • Elena Celledoni
  • Brynjulf Owren
  • Yajuan Sun
چکیده

No Runge-Kutta method can be energy preserving for all Hamiltonian systems. But for problems in which the Hamiltonian is a polynomial, the Averaged Vector Field (AVF) method can be interpreted as a Runge-Kutta method whose weights bi and abscissae ci represent a quadrature rule of degree at least that of the Hamiltonian. We prove that when the number of stages is minimal, the Runge-Kutta scheme must in fact be identical to the AVF scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy-preserving Runge-kutta Methods

We show that while Runge-Kutta methods cannot preserve polynomial invariants in general, they can preserve polynomials that are the energy invariant of canonical Hamiltonian systems. Mathematics Subject Classification. 65P10, 65L06. Received May 21, 2008. Published online July 8, 2009. All Runge-Kutta (RK) methods preserve arbitrary linear invariants [12], and some (the symplectic) RK methods p...

متن کامل

A Characterization of Energy-Preserving Methods and the Construction of Parallel Integrators for Hamiltonian Systems

High order energy-preserving methods for Hamiltonian systems are presented. For this aim, an energy-preserving condition of continuous stage Runge–Kutta methods is proved. Order conditions are simplified and parallelizable conditions are also given. The computational cost of our high order methods is comparable to that of the average vector field method of order two.

متن کامل

2-stage explicit total variation diminishing preserving Runge-Kutta methods

In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...

متن کامل

Linear energy-preserving integrators for Poisson systems

For Hamiltonian systems with non-canonical structure matrix a new class of numerical integrators is proposed. The methods exactly preserve energy, are invariant with respect to linear transformations, and have arbitrarily high order. Those of optimal order also preserve quadratic Casimir functions. The discussion of the order is based on an interpretation as partitioned Runge–Kutta method with ...

متن کامل

Energy-Preserving Integrators and the Structure of B-series

B-series are a powerful tool in the analysis of Runge–Kutta numerical integrators and some of their generalizations (“B-series methods”). A general goal is to understand what structure-preservation can be achieved with B-series and to design practical numerical methods that preserve such structures. B-series of Hamiltonian vector fields have a rich algebraic structure that arises naturally in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2014